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Abstract
This work reviews the entropy conservative (EC) schemes introduced by Tadmor and exam-
ines their use in the receding flow problem extensively studied by Liou. This is motivated
by Liou’s recent findings that an abnormal spike in temperature observed with finite-volume
schemes is linked to a spurious entropy rise that can be prevented in principle by conserving
entropy. While a semi-discrete analysis suggests EC schemes are a good fit, a fully discrete
analysis based on Tadmor’s framework shows the non-negligible impact of time-integration
on the solution behavior. In addition, an EC time-integration scheme is developed to show
that enforcing conservation of entropy at the fully discrete level does not necessarily prevent
the temperature spike.

Keywords Time integration · Entropy conservation · Entropy stability

1 Introduction

In this paper, we consider general hyperbolic systems of conservation laws of the form

∂u

∂t
+ ∂ f

∂x
= 0, u = u(x, t) ∈ R

N, x ∈ R, t > 0, (1)

and their numerical solution using finite-volume schemes. In Eq. (1), f is a smooth nonlinear
flux function of the unknown u. We also assume that the system (1) has a convex extension
in the sense that an additional conservation law [1]:
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∂U

∂t
+ ∂F

∂x
= 0, (2)

where U = U (u) ∈ R is a convex function of u and F = F(u), naturally results from (1).
The pair (U , F) is often referred to as a generalized entropy–entropy flux pair. One such
system is the one-dimensional Euler equations:

∂

∂t

⎡
⎣

ρ

ρu
ρet

⎤
⎦ + ∂

∂x

⎡
⎣

ρu
ρu2 + p

ρuht

⎤
⎦ = 0, (3)

where ρ is the density, u is the velocity, et = e+ 1
2u

2 is the total energy per unit mass, e is the

internal energy, p = ρ(γ −1)e is the thermodynamic pressure, ht = et + p
ρ

= a2
γ−1 + 1

2u
2 is

the total enthalpy and a =
√

γ p
ρ

is the speed of sound. An additional conservation equation

that results from Eq. (3) is that of entropy ρS (S is the specific entropy):

∂(ρS)

∂t
+ ∂(ρuS)

∂x
= 0.

It iswell known that discontinuous solutions to (1) can develop fromsmooth initial conditions.
Weak solutions must therefore be sought. Unfortunately, weak solutions are not uniquely
defined and one needs additional conditions to distinguish physical numerical solutions from
non-physical ones. For the Euler equations, solutions that introduce shock waves must lead
to an increase in the entropy of the system. One way to enforce this property is to require the
numerical solution to satisfy, in the sense of distributions:

∂(−ρS)

∂t
+ ∂(−ρuS)

∂x
< 0. (4)

The negative sign on the left-hand side of the inequality is introduced as a convention to cast
entropy production as a stability statement. The concept of a convex extension generalizes
the concept of entropy to hyperbolic systems of conservation laws. It has been extensively
studied and laid down by a number of researchers includingLax [1,2], Friedrichs [1], Kruzkov
[3], Tadmor [4], Harten [5] and Godunov [6].

Numerical schemes that are consistent with the system (1) are not necessarily consistent
with its convex extension (2). The pioneering work of Tadmor [7] introduced a class of
finite-volume schemes that enforces either conservation or production of entropy at the semi-
discrete level provided a certain condition is met by the interface flux. The first Entropy
Conservative (EC) interface flux, which consists of a straight path integral in phase space,
was also introduced. Entropy Stable (ES) schemes are achieved by combining an EC flux
with a dissipation term that enforces production of entropy in the presence of discontinuities.
Several developments followed. Of relevance to this work is the extension by Tadmor [8] and
LeFloch et al. [9] of the framework to the fully discrete setting by studying the influence of
time-integration on the entropy production. LeFloch et al. [9] introduced a Crank–Nicolson-
like integration scheme using an intermediate state in time that introduces no production of
entropy. One issue that hindered the use of EC/ES schemes in general is the non-closed form
the first EC flux takes in the general nonlinear case (when the entropy is not a quadratic
function of the state). Tadmor [8] introduced a new family of explicit EC fluxes which result
from replacing the straight path along which the integral is computed into subpaths of an
approximate Riemann solution in phase space. Roe [10] introduced what is often referred to
as an “affordable” entropy conservative flux for the Euler equations. This flux is obtained
by solving the entropy conservation condition using algebraic manipulations inspired from
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[11], and has been the baseline EC flux in many of the ES schemes that have been developed
subsequently.

The problem that motivates this work is the receding flow problem (also known as the
123 problem in Toro’s book [12]) studied extensively by Noh [13] and Liou [14,15]. The
problem consists of a smooth flow undergoing rarefaction caused by two flows receding
from each other. It is identified by Liou as an open numerical problem as all well-known
numerical fluxes give an anomalous temperature rise (often termed “overheating”) at the
origin that cannot be fixed by refining the mesh, decreasing the time-step, or increasing
the solution order. Liou [15] first established a connection between the overheating and a
spurious entropy rise after the first time step. In a more recent paper [14], he connected the
entropy rise with the pressure component of the momentum flux. A cure proposed by Liou
consists of replacing the energy equation with either the transport equation for the specific
entropy S or the conservation equation for the entropy ρS. One issue with this approach
is that conservation of total energy is no longer guaranteed. In view of this, the entropy
conservative schemes introduced by Tadmor appear as an interesting option. These schemes,
which enable the conservation of entropy without compromising the conservation of mass,
momentum and energy, were not considered by Liou. An analysis similar to that of Liou [14]
within the framework of Tadmor is therefore worth carrying out. While the semi-discrete
analysis of Liou [14] suggests that the overheating could be avoided with an EC flux, the
fully discrete analysis carried out in this paper reveals the non-negligible influence of time-
integration.

The effect of time-integration on the entropy conservation and entropy stability properties
of a semi-discrete scheme has not been an active topic of research. From [8], we know
that if an entropy conservative flux is used in space, then the 1st-order explicit and implicit
Euler schemes will make the resulting fully discrete system entropy unstable and stable,
respectively. The question of the entropy stability of explicit and implicit schemes in general
remains open. When the method of lines is used, Tadmor [8] shows that the entropy stability
of the fully discrete scheme is determined by the balance between the entropy produced
by the flux and the entropy produced by the time scheme. A fully discrete EC scheme is
for instance obtained when an EC time scheme is used with an EC flux. To the authors
knowledge, the only EC time scheme available to date is the one introduced by LeFloch et
al. [9]. However, this time scheme has the same issue as the first EC flux of Tadmor (non-
closed form). This is no coincidence, as it turns out that the entropy conservation condition
for spatial fluxes and the entropy conservation condition for this time scheme are similar.
Building on this analogy and the algebraic manipulations that led to the EC Roe flux, we
derive a new second-order EC time-integration scheme for the Euler equations and use it
to show that conserving entropy at the fully discrete level does not necessarily prevent the
overheating.

The paper is organized as follows. In Sects. 2 and 3, we review Tadmor’s numerical
framework at the semi-discrete level. InSect. 4,wemove to the fully discrete case:we examine
the effect of time-integration on the entropy conservation properties of the underlying semi-
discrete scheme, and introduce a new time-integration scheme for the Euler equations. In
Sect. 5, the overheating problem is analyzed in the context of EC schemes. We provide both
analytical and numerical arguments explaining why the conservation of entropy is not exactly
a remedy to the spurious behavior typically observed with finite-volume schemes.
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2 The Entropy Variables

An entropy–entropy flux pair (U , F) is one that satisfies:

∂U

∂u

∂ f

∂u
= ∂F

∂u
. (5)

The entropy variables are defined by:

v =
(

∂U

∂u

)T

. (6)

The convexity of the entropy function U makes the mapping u → v one-to-one. So we can
rewrite Eq. (1) in terms of these variables:

∂u

∂t
+ ∂g

∂x
= 0, g(v) = f (u(v)).

With the entropy variables, the system is symmetrized, meaning that the Jacobians of its
temporal (denoted H = H(v)) and spatial fluxes are symmetric. Another property is that the
temporal Jacobian is also positive definite. This implies that u(v) and g(v) can be written as
gradients of potential functions φ and ψ :

u(v) = ∂φ

∂v
, g(v) = ∂ψ

∂v
.

With Eq. (5), it can be shown that these potential functions are given by:

φ(v) = vT u(v) −U (u(v)), ψ(v) = vT g(v) − F(u(v)).

For the Euler equations, the entropy–entropy flux pair we work with is the one introduced
by Hughes et al. [16]:

U (u) = − ρS

γ − 1
, F(u) = − ρuS

γ − 1
, S = ln(p) − γ ln(ρ).

This pair belongs to the class of entropy pairs derived byHarten [5] andTadmor [17]. This pair
has interesting properties when applied to the Navier–Stokes equations: the Clausius–Duhem
relation is recovered [16] and the corresponding potential functions are φ = ρ,ψ = ρu. The
corresponding entropy variables are given by:

v =
[

γ − S

γ − 1
− 1

2

ρu2

p
,

ρu

p
, −ρ

p

]T

.

The temporal jacobian H is given [16,18] by:

H =
⎡
⎢⎣

ρ ρu ρet

ρu ρu2 + p ρhtu

ρet ρhtu ρ(ht )2 − a2 p
γ−1

⎤
⎥⎦ .

3 The Semi-discrete Case

Denote j the cell index in space. A finite-volume discretization of Eq. (1) is given by:

d

dt
u j (t) + 1

Δx

[
f j+ 1

2
− f j− 1

2

]
= 0. (7)
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In cell j , u j is the mean solution over the cell and f j+ 1
2
is a consistent flux at the right

interface. In the last section, we saw that for smooth solutions of a system of conservation
laws equipped with an entropy pair (U , F), the entropyU should be conserved according to
Eq. (2). For solutions with discontinuities, an admissibility criterion established by Lax [2]
and Kruzkov [3] is that:

∂

∂t
U (u) + ∂

∂x
F(u) ≤ 0, (8)

The semi-discrete scheme (7) is EC if it also solves a semi-discrete version of Eq. (2):

d

dt
U (u j ) + 1

Δx

[
Fj+ 1

2
− Fj− 1

2

]
= 0, (9)

with Fj+ 1
2
a consistent entropy interface flux. Likewise, the scheme is entropy-stable if a

semi-discrete version of Eq. (8):

d

dt
U (u j ) + 1

Δx

[
Fj+ 1

2
− Fj− 1

2

]
≤ 0, (10)

is inherently solved. Since

vTj
d

dt
u j = d

dt
U (u j ),

an EC flux f j+ 1
2
is one such that there exists a consistent entropy interface flux Fj+ 1

2
that

satisfies:
vTj

[
f j+ 1

2
− f j− 1

2

]
= Fj+ 1

2
− Fj− 1

2
.

Tadmor [7] showed that this is equivalent to

[v j+1 − v j ]T f j+ 1
2

= ψ j+1 − ψ j , (11)

whereψ j = ψ(u j ), and that if an interface flux f j+ 1
2
is EC, then the corresponding interface

entropy flux function Fj+ 1
2
is given by:

Fj+ 1
2

= 1

2
[v j + v j+1]T f j+ 1

2
− 1

2
(ψ j + ψ j+1). (12)

3.1 Entropy Conservative Fluxes

The first EC flux was introduced by Tadmor [19]:

f j+ 1
2

=
∫ 1

0
f (v j+ 1

2
(ξ))dξ, v j+ 1

2
(ξ) = v j + ξΔv j+ 1

2
, Δv j+ 1

2
= v j+1 − v j . (13)

This elegant flux has the inconvenient property of not having a closed form. Its evaluation
requires using quadrature rules. The flux given by Eq. (13) is an integration along a straight
path in phase space. Later on, Tadmor [8] proposed to use piecewise-constant paths instead.
The resulting flux has an explicit form which depends on the path decomposition.

An EC flux that has beenmore popular over the years is the one derived by Roe [10] for the
Euler equations.Themethodused to derive it is central to thiswork.Denote f ∗ = [ f1, f2, f3]
the interface flux separating two adjacent cells. Using the jump notation, the condition (11)
can be rewritten as:

[v]T f ∗ = [ψ].
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For the Euler equations and the entropy pair we work with, the jump term in the entropy
variables can be rewritten as:

[v]T =
[ −[S]

γ − 1
− 1

2

[
ρu2

p

]
,

[
ρu

p

]
, −

[
ρ

p

]]
.

Define the set of independent variables (z1, z2, z3) = (
√

ρ
p ,

√
ρ
p u,

√
ρ p). Then

ρ = z1z3, p = z3
z1

,
ρ

p
= z21,

ρu

p
= z1z2,

ρu2

p
= z22, ρu = z2z3,

S = (1 − γ )ln(z3) − (1 + γ )ln(z1).

Using the identities [ab] = ā[b] + b̄[a] and [ln(a)] = [a]
aln

, where ā and aln denote the
arithmetic and logarithmic averages, respectively, one can show that:

[S] = (1 − γ )

zln3
[z3] − (1 + γ )

zln1
[z1],

[
ρu2

p

]
= 2z̄2[z2],

[
ρu

p

]
= z̄1[z2] + z̄2[z1],

[
ρ

p

]
= 2z̄1[z1], [ρu] = z̄2[z3] + z̄3[z2].

The motivation behind the introduction of the variables zi is to “exactly linearize” all the
jump terms involved in the entropy conservation equation (11). The entropy conservation
condition now becomes:

f1

(
1

zln3
[z3] − 1 + γ

1 − γ

1

zln1
[z1] − z̄2[z2]

)
+ f2(z̄1[z2] + z̄2[z1]) + f3(−2z̄1[z1])

= z̄2[z3] + z̄3[z2]. (14)

Regrouping, Eq. (14) becomes:

[z1]
(

− f1
1 + γ

1 − γ

1

zln1
+ f2 z̄2 − 2 f3 z̄1

)
+ [z2](− f1 z̄2 + f2 z̄1) + [z3]

(
1

zln3
f1

)

= [z2]z̄3 + [z3]z̄2.
The jumps in the zi are independent, therefore:

− f1
1 + γ

1 − γ

1

zln1
+ f2 z̄2 − 2 f3 z̄1 = 0, − f1 z̄2 + f2 z̄1 = z̄3,

1

zln3
f1 = z̄2.

The variables zi basically enabled us to convert the scalar condition (11) into a system of 3
equations that we can easily solve:

f1 = z̄2z
ln
3 , f2 = (z̄3 + f1 z̄2)/(z̄1), f3 = 1

2z̄1

(
− f1

1 + γ

1 − γ

1

zln1
+ f2 z̄2

)
.

This is the Roe EC flux.
The choice of the variables zi is open. Using the same method with the set (z1, z2, z3) =

(ρ, u,
ρ
2p ), Chandrasekhar [20] derived the following EC flux:

f1 = zln1 z̄2, f2 = z̄1
2z̄3

+ z̄2 f1, f3 =
[

1

2(γ − 1)zln3
− 1

2
z̄22

]
f1 + z̄2 f2. (15)
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Jameson [21] showed that an interface flux preserves the kinetic energy of the system at
the semi-discrete level provided that the density flux f1 and momentum flux f2 satisfy
f2 = p̃ + u f1, where p̃ is any consistent average pressure. The EC flux given by Eq. (15)
satisfies this property as well. In contrast to the conclusions of [20] (Sect. 5.4.), such a flux
is not unique. With the set (z1, z2, z3) = (p, u,

ρ
2p ), the resulting EC flux:

f1 = 2z̄3 z̄2z
ln
1 , f2 = ρ̄

2z̄3
+ ū f1, f3 = f1

(
γ

γ − 1

1

2zln3
− 1

2
z22

)
+ f2 z̄2 − z̄1 z̄2,

is also kinetic energy preserving. The term −z̄1 z̄2 of the energy flux f3 is missing in [20].
Although the EC Roe flux was introduced for the Euler equations, the methodology used

to derive it is general and can be applied to other systems in multiple dimensions such as the
ideal MagnetoHydroDynamics (MHD) equations (see Winters et al. [22]).

3.1.1 Entropy Stable Spatial Fluxes

Entropy stable fluxes enforce inequality (10), with Fj+ 1
2
a consistent entropy interface flux.

Entropy Stable (ES) fluxes are typically built by combining an entropy stabilization term
f S
j+ 1

2
with an EC flux f ∗

j+ 1
2
. An ES flux has the general form f j+ 1

2
= f ∗

j+ 1
2
− f S

j+ 1
2
and the

entropy stabilization term should be such that:

vTj

[
f j+ 1

2
− f j− 1

2

]
=

[
Fj+ 1

2
− Fj− 1

2

]
+ E, E > 0, (16)

so that, at the semi-discrete level:

d

dt
U (u j (t)) + 1

Δx

[
Fj+ 1

2
− Fj− 1

2

]
= −E < 0.

Note that the entropy flux Fj+ 1
2
does not necessarily need to be the one generated by f ∗

j+ 1
2

(denoted F∗
j+ 1

2
). Tadmor [19] showed that if the stabilizer has the general form

f S
j+ 1

2
= Q j+ 1

2
Δv j+ 1

2
,

with Q j+ 1
2

∈ R
N×N , then the condition (16) is almost met with:

Fj+ 1
2

= F∗
j+ 1

2
− vTj+1Q j+ 1

2
Δv j+ 1

2
,

and

E = 1

Δx

[
ΔvT

j+ 1
2
Q j+ 1

2
Δv j+ 1

2
+ ΔvT

j− 1
2
Q j− 1

2
Δv j− 1

2

]
. (17)

Entropy stability is achieved if the dissipation matrix Q j+ 1
2
positive definite.
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4 The Fully Discrete Case

4.1 Entropy Stability of Time Schemes

Let’s assume that an EC flux is used in space. What happens at the fully discrete level, when
time is discretized? If we evolve in time using Forward Euler (FE) for instance:

un+1
j − unj + λ

[
f n
j+ 1

2
− f n

j− 1
2

]
= 0, λ = Δt

Δx
, (18)

are we simultaneously evolving in time the entropy equation with FE? In other words, is the
fully discrete scheme (18) also solving

U (un+1
j ) −U (unj ) + λ

[
Fn
j+ 1

2
− Fn

j− 1
2

]
= 0 ? (19)

In Eq. (19) and what follows, the superscript n refers to the time instant. We know that

(vnj )
T

[
f n
j+ 1

2
− f n

j− 1
2

]
= Fn

j+ 1
2

− Fn
j− 1

2
,

therefore the answer depends on whether

(vnj )
T [un+1

j − unj ] = U (un+1
j ) −U (unj )

holds. Tadmor [8] showed that, for FE:

(vnj )
T [un+1

j − unj ] = U (un+1
j ) −U (unj ) − EFE (vnj , v

n+1
j ), (20a)

EFE (vnj , v
n+1
j ) =

∫ 1
2

− 1
2

(
1

2
+ ξ

) (
Δv

n+ 1
2

j

)T

H

(
v
n+ 1

2
j (ξ)

)
Δv

n+ 1
2

j dξ > 0, (20b)

where v
n+ 1

2
j (ξ) = vn+1

j +vnj
2 + ξ(vn+1

j − vnj ) and Δv
n+ 1

2
j = vn+1

j − vnj . This means that at the
fully discrete level:

U (un+1
j ) −U (unj ) + λ

[
Fn
j+ 1

2
− Fn

j+ 1
2

]
= EFE > 0. (21)

This makes FE unconditionally entropy unstable. For Backward Euler, Tadmor [8] showed
that:

(vn+1
j )T [un+1

j − unj ] = U (un+1
j ) −U (unj ) + E BE (vnj , v

n+1
j ), (22a)

E BE (vnj , v
n+1
j ) =

∫ 1
2

− 1
2

(
1

2
− ξ

) (
Δv

n+ 1
2

j

)T

H

(
v
n+ 1

2
j (ξ)

)
Δv

n+ 1
2

j dξ > 0.

(22b)

This means that at the fully discrete level:

U (un+1
j ) −U (unj ) + λ

[
Fn+1
j+ 1

2
− Fn+1

j+ 1
2

]
= −E BE < 0 (23)

This makes BE unconditionally entropy stable. One may wonder if all implicit and explicit
time-integration schemes are unconditionally entropy stable and unstable, respectively. To
the best of the authors’ knowledge, this is an open question. To support this statement, let’s
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use the two main results of Tadmor’s analysis, i.e. Eqs. (20a) and (22a), to derive the entropy
production of some well-known time-integration schemes. Define:

R f
j (u) = − 1

Δx

(
f j+ 1

2
− f j− 1

2

)
, RF

j (u) = vTj R
f
j (u) = − 1

Δx

(
Fj+ 1

2
− Fj− 1

2

)
,

so that we can rewrite Eq. (7) in a more compact form. The implicit 2nd-order backward
difference (BDF2) scheme is given by:

un+2
j − 4

3
un+1
j + 1

3
unj = 2

3
Δt R f

j (u
n+2). (24)

If we rewrite the scheme (24) as:
4

3
(un+2

j − un+1
j ) − 1

3
(un+2

j − unj ) = 2

3
Δt R f

j (u
n+2),

left-multiply by (vn+2
j )T and use Eq. (22a), we obtain the following for the discrete entropy:

U (un+2
j ) − 4

3
U (un+2

j ) + 1

3
U (unj ) = 2

3
Δt RF

j (un+2) − E BDF2

This is basically BDF2 for the discrete entropy, with an additional entropy production term
E BDF2 given by:

E BDF2 = 4

3
E BE (vn+1

j , vn+2
j ) − 1

3
E BE (vnj , v

n+2
j )

The production term E BE (vnj , v
n+2
j ) can determine the entropy stability of BDF2. However,

its sign is hard to establish. The explicit Leap-Frog Method is given by:

un+1
j = un−1

j + 2Δt R f
j (u

n).

Subtracting unj on both sides, left-multiplying by (vnj )
T , and using Eqs. (20a) and (22a), we

get a Leap-Frog of the entropy

U (un+1
j ) = U (un−1

j ) + 2Δt RF
j (un) − ELF

with an entropy production term E LF given by:

ELF = E BE (vn−1
j , vnj ) − EFE (vnj , v

n+1
j ).

Here again, it is hard to make a statement about the sign of the entropy production term E LF .
We could derive similar results for other schemes and reach the same conclusion.

4.2 Entropy Conservative Time Schemes

We still assume that an EC flux is used in space. LeFloch et al. [9] (Theorem 3.1.) showed
that the following scheme:

un+1
j − unj

Δt
= R f

j

(
u

(
vn+ 1

2

))
, (25)

with vn+ 1
2 an intermediate state in time given by:

vn+ 1
2 =

∫ 1
2

− 1
2

v

(
un + un+1

2
+ ξΔun+ 1

2

)
dξ,Δun+ 1

2 = un+1 − un, (26)

is entropy conservative in the sense that the scheme satisfies:
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U (un+1
j ) −U (unj )

Δt
= RF

j (u(vn+ 1
2 )).

The scheme is also shown to be second-order accurate, in the sense that Eq. (25) is a second-

order approximation to Eq. (1) evaluated at t = tn+1+tn
2 . If the system of interest is symmetric

(v = u), the intermediate state becomes vn+ 1
2 = un+un+1

2 .
Tadmor refers to this scheme as a “Generalized Crank–Nicolson” scheme in [8]. In the

general nonlinear case, this scheme is “impractical” to the same extent as the first EC flux.
The intermediate state does not have a closed form and requires quadrature.

The similarity between the intermediate state in time (26) and the first EC flux (13) is no
coincidence. The condition on the intermediate state for the proposed scheme to be entropy
conservative is (see Assumption 2.1. in [9] for q = 1):

(v
n+ 1

2
j )T [un+1

j − unj ] = U (un+1
j ) −U (unj ). (27)

This equation is an analog of the Entropy conservation condition in space (11). We can
therefore apply the technique used to derive the EC Roe flux to derive an “affordable”

intermediate state in time. Denote vn+ 1
2 = [v1, v2, v3]. Let’s consider ρ, u and p as the

independent variables. The jumps can be written as:

[ρu] = ρ̄[u] + ū[ρ], [ρet ] = [p]
γ − 1

+ 1

2
[ρu2] = [p]

γ − 1
+ 1

2
ū2[ρ] + ρ̄ū[u], (28)

[ρS] = ρ̄[S] + S̄[ρ] = ρ̄
[p]
pln

− γ ρ̄
[ρ]
ρln

+ S̄[ρ]. (29)

Injecting Eqs. (28) and (29) in Eq. (27) and regrouping we obtain:

[ρ]
(

v1 + ūv2 + 1

2
ū2v3

)
+ [u](ρ̄v2 + ūρ̄v3) + [p]

(
v3

γ − 1

)

= −1

γ − 1

(
[ρ]

(
S̄ − γ

ρ̄

ρln

)
+ [p] ρ̄

pln

)
.

The jumps are independent, therefore:

v1 + ūv2 + 1

2
ū2v3 = 1

γ − 1

(
γ − S̄

ρ̄

ρln

)
, ρ̄v2 + ūρ̄v3 = 0, v3 = − ρ̄

pln
.

The solution is:

v1 = 1

γ − 1

(
γ

ρ̄

ρln
− S̄

)
− ūv2 − 1

2
ū2v3, v2 = −ūv3, v3 = − ρ̄

pln
. (30)

This intermediate state satisfies condition (27) and is consistent. Let’s show that the resulting

scheme is second-order as well. A Taylor expansion about t = tn+tn+1

2 gives:

un+1
j − unj

Δt
= ∂t u

(
x j ,

tn + tn+1

2

)
+ O(Δt2).

To conclude, let’s show that:

vn+ 1
2 = v

(
tn + tn+1

2

)
+ O(Δt2).
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Let’s establish a few results first. Let a(t) be a strictly positive time-dependent quantity and

denote an = a(tn), an+1 = a(tn+1) and a∗ = a( t
n+tn+1

2 ). Using a Taylor analysis about

t = tn+tn+1

2 = tn + Δt
2 = tn+1 − Δt

2 , one can show that:

ā = a∗ + O(Δt2), ā2 = (a∗)2 + O(Δt2), (31)

an+1 − an = Δta∗
,t + O(Δt3), log(an+1) − log(an) = Δt

a∗
,t

a∗ + O(Δt3). (32)

Therefore:

aln = an+1 − an

log(an+1) − log(an)
= Δta∗

,t + O(Δt3)

Δt
a∗
,t
a∗ + O(Δt3)

= a∗ + O(Δt2)

1 + O(Δt2)
= a∗ + O(Δt2)

Likewise we show another useful identity:

ā

bln
= a∗

b∗ + O(Δt2), (33)

where b(t) is another strictly positive quantity. With Eqs. (31) and (33) we can show that the
nonlinear intermediate state vn+ 1

2
= [v1, v2, v3] defined by Eq. (30) satisfies:

v1 = γ − S∗

γ − 1
− 1

2

ρ∗(u∗)2

p∗ + O(Δt2), v2 = ρ∗u∗

p∗ + O(Δt2), v3 = −ρ∗

p∗ + O(Δt2).

This methodology can be applied to other hyperbolic systems with a convex extension (shal-
low water equations, ideal MHD equations, etc...).

5 The Overheating Problem: Receding Flow

The receding flow problem [14,15] is a 1D Riemann problem defined by the following initial
conditions:

uL < 0, uR > 0, ρL = ρR = ρ0, pL = pR = p0. (34)

where the subscripts L and R refer to the left and right sides of the domain, respectively. Liou
considered the case of equal velocity magnitudes |uL | = |uR | = u0.

Liou describes this problem as “fundamental” in the sense that the overheating cannot
be overcome by refining the mesh or changing the time step (it is independent of the CFL
number). One of the main findings of his study is that the overheating originates from an ab
initio entropy production at the beginning of the run. Figure 1 (Roe flux in space, forward
euler in time) illustrates the numerical behavior that is typically observed with the wide
range of fluxes Liou [14,15] considered. The pressure is well resolved whereas the density is
slightly under-estimated at the center (see Fig. 1a). That the overheating is generated at the
very first instant is intuitive given the nature of rarefaction waves (discontinuities that should
vanish after some time) in contrast to shock waves (discontinuities that persist in time).

5.1 Liou’s Semi-discrete Analysis

To investigate how S is produced in the discretized conservation laws, Liou [14] begins with
the following equation:

p

R

∂S

∂t
= −

(
a2

γ − 1
− u2

2

)
∂ρ

∂t
− u

∂ρu

∂t
+ ∂ρet

∂t
.
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Fig. 1 Receding flow problem: numerical solution (full line) at t = 0.18s with the Roe flux and forward Euler
in time. 100 cells and Δt = 10−3 s. a Density. b Temperature. c Velocity. d Specific entropy

R is the gas constant. This equation relates the temporal variation of the specific entropy S
to that of mass, momentum and total energy.

Denote cell “R” as the cell immediately to the right of the interface with index 1. Then
integration over cell R gives:

∮
R

p

R

∂S

∂t
dV =

(
(a0)2

γ − 1
− (u0)2

2

)
[(ρu)3/2 − (ρu)1/2]

+ u0[(ρu2 + p)3/2 − (ρu2 + p)1/2]
− [(ρuht )3/2 − (ρuht )1/2]. (35)

The fluxes at interface 3/2 are determined by the initial conditions:

(ρu)3/2 = ρ0u0, (ρu2 + p)3/2 = ρ0(u0)2 + p0, (ρuht )3/2 = ρ0u0(ht )0. (36)
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Fig. 2 Receding flow problem: Numerical solution (full line) at t = 0.18s with the EC Roe flux and forward
Euler in time. 100 cells and Δt = 10−3 s. a Density. b Temperature. c Velocity. d Specific entropy

For all the fluxes tested by Liou [14], the values at the interface 1/2 are given by:

(ρu)1/2 = 0, (ρu2 + p)1/2 = m1/2 + p1/2, (ρuht )1/2 = 0. (37)

m1/2 and p1/2 are the momentum and pressure fluxes, respectively. Combining Eqs. (35),
(36) and (37) results in the following:

∮
R

p

R

∂S

∂t
dV = u0[(p0 − p1/2) − m1/2]. (38)

The right-hand side term remains non-zero for all the fluxes Liou considered. An identical
result is obtained for the “L” cell immediately to the left of the interface, meaning that the
entropy rise occurs symmetrically about the interface. In light of Eq. (38), Liou attributed the
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Fig. 3 Receding flow problem: numerical solution (full line) at t = 0.18s with the EC Roe flux and backward
Euler in time. 100 cells and Δt = 10−3 s. a Density. b Temperature. c Velocity. d Specific entropy

ab initio generation of entropy to the pressure and momentum components of the numerical
flux. He concluded his study by showing that replacing the energy equation with the conser-
vation equation for entropy cures the overheating. One of the issues with this cure is the lack
of conservation of energy.

Liou’s study did not consider Tadmor’s family of schemes. EC schemes allow the conser-
vation of entropy without compromising that of energy. If the EC Roe flux is used, the flux
values at interface 1/2 take the values:

(ρu)1/2 = 0, (ρu2 + p)1/2 = p0, (ρuht )1/2 = 0.

and we obtain, for both the R and L cells:
∮

p

R

∂S

∂t
dV = 0.
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Fig. 4 Receding flow problem: numerical solution (full line) at t = 0.18s with the EC Roe flux and the EC
scheme in time. 100 cells and Δt = 10−3 s. a Density. b Temperature. c Velocity. d Specific entropy

This suggests that the spurious entropy production would be avoided. This is unfortunately
not the case (see Fig. 2). In the next section, we use a fully discrete analysis to explain why
the spurious entropy rise is not necessarily avoided.

5.2 Fully Discrete Analysis with EC Schemes

The entropy rise observed with EC schemes can be explained if we consider the influence of
time-integration. Let’s assume that Forward Euler is used together with the EC Roe flux. We
are interested in the jump of specific entropy S1 − S0 in the R cell after the first time step.
We have the following discrete equation for density:
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Fig. 5 Receding flow problem: snapshots of the specific entropy profile when the EC Roe flux is used in space
and BE is used in time. 100 cells and Δt = 10−3 s. a t = 0.018s. b t = 0.072s. c t = 0.126s. d t = 0.18s

ρ1 − ρ0 = Δt

Δx
[(ρu)1/2 − (ρu)3/2] = − Δt

Δx
ρ0u0. (39)

Using the analysis of Sect. 4, we have the following discrete equation for the “entropy”
U = − ρS

γ−1 :

(ρS)1 − (ρS)0 = Δt

Δx
[(ρuS)1/2 − (ρuS)3/2] + (1 − γ )EFE . (40)

The interface flux for the entropy is given by Eq. (12). With the EC Roe flux, we get the
values:

(ρuS)1/2 = 0, (ρuS)3/2 = ρ0u0S0.
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Fig. 6 Receding flow problem: total entropy (ρS) production over time. The EC Roe flux in used in space. EC:
our new EC scheme in time. FE: forward Euler in time. BE: backward Euler in time. 100 cells andΔt = 10−3 s

The entropy production term EFE is given by Eq. (20a). Equation (40) becomes:

(ρS)1 − (ρS)0 = − Δt

Δx
ρ0u0S0 + (1 − γ )EFE . (41)

Combining Eqs. (41) and (39) gives:

(ρS)1 − (ρS)0 = S0(ρ1 − ρ0) + (1 − γ )EFE .

Regrouping, one obtains:
S1 − S0 = (1 − γ )EFE/ρ1. (42)

Equation (42) is exact and shows that when the EC Roe flux is combined with 1st order
Euler explicit in time, the spurious entropy production is due to the entropy produced by
the time-integration scheme. While this type of analysis can hardly be carried out for more
complex combinations of fluxes and time-integration schemes, it is enough to justify the
non-negligible impact of time-integration on the numerical behavior of the solution. Note
that if non EC fluxes were used in space and if conservation of energy was replaced with
conservation of entropy, the term (1− γ )EFE would disappear and we would indeed obtain
that S1 − S0 = 0. The same result could be obtained with implicit schemes depending on
the flux used in space.

5.3 Numerical Experiments

In this section, we investigate the numerical solution of the receding flow problem when
an EC flux is used in space. Three time-integration schemes are considered: Forward Euler,
Backward Euler and the EC time scheme we introduced in Sect. 4.2.

123



988 Journal of Scientific Computing (2019) 78:971–994

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.82

1.84

1.86

1.88

1.90

1.92

1.94

1.96

1.98

2.00

2.02

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0.69

0.7

0.71

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

(a) (b)

(c) (d)

Fig. 7 Receding flow problem: numerical solution (full line) at t = 0.18s with the ES flux of Ismail and Roe
[23] in space and our EC scheme in time. 100 cells and Δt = 10−3 s. a Density. b Temperature. c Velocity. d
Specific entropy

The EC time scheme and BE are implicit schemes. The nonlinear equations are solved
iteratively usingNewton’smethod followed by a line search algorithm. The Jacobianmatrices
associated with each scheme are directly computed using the complex step method.

Figures 2, 3 and 4 show the numerical solution with Forward Euler, Backward Euler, and
the EC time scheme, respectively, for a grid of 100 elements and a time-step Δt = 10−3 s.
Oscillations of various magnitudes are observed in all three cases. The oscillations are more
pronounced in the Forward Euler case and their magnitude keeps growing with time because
of the negative entropy production that is brought in by FE at every time instant. The opposite
trend is observed in the Backward Euler case. The oscillations are much more damped. This
is a consequence of the positive entropy production of BE.We also observe a specific entropy
profile (Fig. 3d) that is similar to the overheated profile (Fig. 1d) observed with conventional
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Fig. 8 Receding flow problem: numerical solution (full line) at t = 0.18s with the EC Roe flux and our EC
scheme in time. 1000 cells and Δt = 10−4 s. a Density. b Temperature. c Velocity. d Specific entropy

schemes. Figure 5 shows how the specific entropy profile in the BE case evolves over time.
The spike at the center increases with time as the oscillations caused by the EC flux in space
are damped by BE. In the case of a fully discrete conservative scheme (Fig. 4), what we
observe are oscillations of a magnitude higher than those of BE and much lower than for FE.
The growth of oscillations is more controlled than for Forward Euler. We also note that the
specific entropy profile is the most accurate of all three cases. The BE case still provides the
best solution overall and illustrates why entropy-stable (as opposed to entropy conservative)
schemes are used in practice. This shows that enforcing conservation of entropy, even when
it is a property of the exact solution, does not necessarily lead to a better behaved numerical
solution. Figure 6 shows the production of entropy over time in all three cases. It confirms the
entropy stability properties of FE and BE that Tadmor proved, and the entropy conservation
property of our time scheme. The rate at which BE produces positive entropy decreases with
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Fig. 9 Receding flow problem: numerical solution (full line) at t = 0.18s with the EC Roe flux and backward
Euler in time. 1000 cells and Δt = 10−4s. a Density. b Temperature. c Velocity. d Specific entropy

time. This is because, as time goes by, the oscillations caused by the EC flux in space are
damped by the dissipation of BE and the numerical solution becomes smoother.

Figure 3 suggests that when an EC flux is used in space, the overheating is correlated to a
positive entropy production. Increasing the time step for BE increases that production. More
generally, it appears from Figs. 2d, 3d and 4d that the entropy production of the fully discrete
scheme has a strong impact on the specific entropy profile that Liou’s latest studies focused
on. The profile of Fig. 4d (entropy conservative) is in between that of Figs. 2d (entropy
unstable) and 3d (entropy stable).

Figure 7 shows the results obtained when entropy stability comes from the spatial flux
instead of the temporal scheme, as in the Backward Euler case. The entropy stable flux of
Ismail and Roe [23] is used in space together with our EC time scheme. The results are the
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Fig. 10 Receding flow problem: snapshots of the specific entropy profile when the EC Roe flux is used in
space and our EC scheme is used in time. 1000 cells and Δt = 10−4 s. a t = 0.0179 s. b t = 0.0716 s. c
t = 0.1253 s. d t = 0.179 s

same as in Fig. 1. This shows that entropy stability, whether enforced through space or time,
produces an overheated profile.

Figures 8 and 9 show the numerical solution with a finer mesh (1000 cells) and a smaller
time-step (Δt = 10−4 s) for the EC time scheme and BE. FE does not converge for this
configuration. In Fig. 8, the oscillations have a higher frequency and a lower magnitude than
in the coarser configuration. The oscillations obtained with the EC scheme in time appear
to have more fine-grained structures than in Fig. 4. The envelope of the density oscillations
observed in Fig. 8a and the density profile of the BE case Fig. 9a suggests that the fully
discrete EC scheme essentially under-estimates density before the rarefaction waves. We can
see that the specific entropy profile (Fig. 8) produced by the fully discrete EC scheme has the
spike associated with the overheating at its center, and two spikes at the beginning of each
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rarefaction that seem to compensate for the overheating. Figure 10, which features snapshots
of the specific entropy profile over time, shows that this structure is conserved over time.

5.4 Additional Remarks

The EC scheme that has been developed in this paper is just one way amongmany to conserve
entropy in addition tomass,momentumand energy at the fully discrete level. In the scalar case
(N = 1), the entropy conservation condition in space (11) has only one solution. For systems
(N > 1) there is more than one possible EC flux. Likewise, the intermediate state in time we
used in ourEC time scheme is just one choice amongmany. The time schemegiven byEq. (25)
is part of a more general class of entropy conservative scheme that LeFloch et al. introduced
in [9]. While one can arguably take the stance that fully discrete EC schemes will produce a
similar behavior to that in Figs. 4 and 8, it is known from past work [10,20,24] that all EC
fluxes do not perform equally. Besides simplicity, one of the reasons why the EC Roe flux is
preferred over the first EC flux of Tadmor is that the latter does not preserve stationary contact
discontinuities. Chandrasekhar [20] introduced an EC flux that has the additional property of
discretely preserving, in the sense of Jameson [21], the kinetic energy of the system. This type
of property is often sought when turbulent flows are simulated. Another metric is how good of
a foundation an EC flux constitutes in an ES scheme. The dissipation component of entropy
stable fluxes is often seen as the complement needed by EC fluxes in the presence of shocks.
An EC scheme will produce non-physical solutions (oscillations) in the presence of shocks
because entropy is not produced. This picture is correct but incomplete. In the presence of
rarefaction waves and moving contact discontinuities, which do not physically require any
production of entropy, EC schemes have the same oscillatory behavior (the receding flow
problem is an illustration). This places an additional burden on the dissipation term which
has to make up for the flaws of its foundation. Derigs et al. [24] showed that entropy stable
schemes perform better on high-pressure shock problems if Chandrasekhar’s EC flux is used
instead of Roe’s.

Besides, Liou showed that the overheating occurs in the very first instants where the two
receding rarefactions waves introduce the most significant discontinuities. It can be easily
checked that with a fine enough grid, any scheme, EC or non-EC, will perform well if started
from the exact solution at t = τ > 0. Completely excluding EC schemes would require
showing that no fully discrete EC scheme can survive in that [0, τ ] time window. We are not
able to prove or disprove such a claim.

6 Conclusions

In this work, entropy conservative schemes, which allow for the conservation of an additional
quantity at the semi-discrete level, were considered for the receding flow problem. This was
motivated by Liou’s latest study that showed the connection between the overheating and a
spurious entropy production ab initio. While Liou’s semi-discrete analysis suggested that the
EC flux of Roe would prevent the overheating, a fully discrete analysis showed the influence
of time-integration on the entropy production.

This observation brought about the question of the behavior of a fully discrete entropy
conservative scheme on this type of problem. Building on the analogy between the entropy
conservation condition for the spatial fluxes and the entropy conservation condition of a
class of time-integration schemes considered by LeFloch et al., we derived a new entropy
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conservative time-integration scheme. Combining it with an EC flux, we observed that it does
not necessarily make the solution better. A better specific entropy profile is obtained but the
oscillatory nature of the numerical solution does not make it a practical option.

Whether all entropy conservative discretizations would have the same unsatisfactory
behavior on this type of problem, where one expects the continuous solution to conserve
entropy, is a question that requires further investigation.
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